
Introduction
This document aggregates responses to the TAG’s ​Self-Review Questionnaire:
Security and Privacy​ for the current versions of these Web Payments Working
Group specifications: ​Web Payments API​, ​Basic Card Payment spec​, and ​Payment
Method Identifiers​. The authors of this report have aggregated responses rather
than analyzing each document in isolation to catch any relevant interaction among
them.

This report was prepared for the discussion at the Working Group’s ​July 2016
face-to-face meeting​. Adam Roach, Evgeny Vinogradov, and Ian Jacobs contributed
to this report.

Analysis
The following sections correspond to sections in the ​Self-Review Questionnaire:
Security and Privacy​ document.

3.1 Does this specification deal with personally-identifiable information?

Yes, and quite a bit of it. The payment request API allows a merchant site to request
a shipping address (including both personal and business names) as well as payer
email and phone number fields. The Basic Card Payment specification collects card
holder names, credit card numbers, and billing addresses.

These data are all user-entered and, based on expected browser implementation,
will require explicit user consent to be sent to a web site. This consent will likely
come in either the form of a per-transaction explicit interaction, or in the form of a
persistent, user-set preference to always send such information automatically to
specific named origins.

Recommendation

The “Privacy Considerations” section of the Payment Request API spec includes a
one-sentence treatment of this issue. This should be expanded to address the types
of consent (contemporaneous consent versus stored consent), and make it clear that
nearly all data exposed through the API is personally identifying.

https://www.w3.org/TR/security-privacy-questionnaire/
https://www.w3.org/TR/security-privacy-questionnaire/
https://w3c.github.io/browser-payment-api/
https://w3c.github.io/webpayments-methods-card/
https://w3c.github.io/webpayments-method-identifiers/
https://w3c.github.io/webpayments-method-identifiers/
https://github.com/w3c/webpayments/wiki/Web-Payments-Working-Group-FTF-Meeting-%28July-2016%29
https://github.com/w3c/webpayments/wiki/Web-Payments-Working-Group-FTF-Meeting-%28July-2016%29
https://www.w3.org/TR/security-privacy-questionnaire/
https://www.w3.org/TR/security-privacy-questionnaire/

3.2 Does this specification deal with high-value data?

Being used to perform financial transactions, the Payment API specification and
Basic Card Payment specifications inherently deal with high-value data.

Currently, the Basic Card Payment specification has both text and diagrams that
strictly encourage web sites to store credit card information for later use. While this
is common practice for web sites today, it is generally done to reduce friction of the
users making subsequent purchases from the same merchant. This is done as a
calculated trade-off: the increase in sales due to lower checkout friction is
considered to be of greater value than the liability exposure of retaining possession
of a large store of credit card information.

In the age of increasing corporate data breaches, maintaining a database of this
kind of high-value data on a network-attached server is becoming increasingly
imprudent. With the introduction of the Payment Request API, however, websites
are being given an opportunity to request the information from the browser in an
automated fashion every time it is needed for a transaction, and with no more
friction than if it were stored by the merchant site. 1

Recommendation

We suggest that the Basic Card Payment specification strongly discourage web sites
from storing credit card information for future use, except in the case of future or
recurring payments. We suggest including explicit guidance that in such cases, Web
site owners should take careful action to prevent disclosure. The sequence diagram
in the document should similarly be updated so as not to encourage server-side
credit card information storage.

Because of the potential for such storage by web sites, and because of the potential
for web browser state synchronization (usually assisted by a synchronization
server), we also tentatively recommend that the Basic Card Payment specification
make some level of mention of PCI DSS compliance. We propose that the group seek
input from major credit card processing companies -- such as Visa and American
Express -- regarding what language about PCI DSS compliance (if any) is
appropriate for the specification. Here is the sort of statement we have in mind:
“The privacy and security sections in this document do not replace conformance
with PCI DSS or any other regulations. Implementors and users of the payment APIs

1 This also provides a couple of non-security-related benefits to users. In particular: users are no
longer required to update their credit card numbers and expiration dates at a variety of
websites when issued a new card, and the involvement of a configurable user agent allows the
user whatever degree of control they wish to have over the sending payment data to websites.

should determine whether they are also subject to PCI DSS and/or other legal
regulations.”

If we elect not to discuss PCI DSS compliance in the Basic Card Payment
specification, we strongly recommend mentioning the topic by name and explicitly
indicating that it will not be discussed.

3.3 Does this specification introduce new state for an origin that persists
across browsing sessions?

The reviewed documents do not explicitly introduce any long-lived origin-scoped
state. Payment apps may choose to make use of existing web technologies for state
persistence.

If users allow specific sites to access persistent payment information without
contemporaneous user consent, those permissions will presumably be stored on a
per-origin basis. The sites themselves will have no programmatic way of setting
such information; however, if such permissions ​are​ set, sites can easily detect such
permission by observing the length of time between a payment request and a
payment response.

Recommendation

None.

3.4 Does this specification expose persistent, cross-origin state to the
web?

In general, the information that can be passed to and from payment applications is
specified on a per-payment-method basis. Since the payment app controls the
information it presents to the users, any un-policed use of this information can
trivially result in the payment provider acting as a cross-origin correlator. Without
mediator policing of values passed between merchant sites and payment providers,
this can happen intentionally through collusion with the payment provider. Even
with the specification and enforcement of allowed fields, such correlation may
occur unintentionally due to overly-permissive fields defined for the use of
payment apps.

Further, for the general case, mediator-provided information -- such as phone
number and email address -- provide strong, unchanging, mostly-unique
correlators for people that are invariant across origins.

The use of payment app registration may provide an additional means of uniquely
identifying browser instances. Because a payment request for an unregistered
payment type ID will fail immediately, while a request for a registered one will wait
for user interaction, websites can use promise resolution timing to probe whether a
specific payment type ID is installed in a browser. Because the API provides a
means to cancel an outstanding payment request, attackers can wait until the
elapsed time has passed a chosen confidence interval and then cancel the request,
eliminating the need for user interaction. Finally, since payment apps can register
for multiple payment method identifiers, payment apps can register for a unique
combination of these identifiers, which web sites can then use this technique to
probe.

For example, if a payment app registered for some random subset of
“​https://example.com/0​” through “​https://example.com/7​”, then websites would be
able to add eight bits of fingerprinting to any other techniques they may currently
employ. Even stronger, if the site were looking for a specific user, registering a
unique payment type ID (e.g.
http://example.org/02332fb8-24b8-44bd-91be-cef3ef849926​) allows use as limited
but guaranteed-unique supercookie.

Recommendation

The Basic Card Payment specification provides additional information that forms a
unique correlator. Unlike unique, cross-origin information provided by the
Payment Request API, the ​cardNumber​ field provided by the Basic Card API is
(necessarily) required rather than optional. The current document appears to
assume that any Basic Card Payment app will request all possible fields; however,
there is a ​PR filed for leaving off unneeded information​. For the sake of privacy, we
recommend this PR be accepted.

The foregoing facts put additional emphasis on the importance for explicit user
consent in providing payment or any information associated with payments to a
requesting web site. We suggest including the following guidance: any mechanism
that allows users to persistently grant information should take steps to inform users
that doing so will allow various websites to positively identify and correlate a user,
even across site owners.

3.5 Does this specification expose any other data to an origin that it
doesn’t currently have access to?

Data is shared between origins (payment app and merchant site) using this API, but
always with user consent. Beyond those issues already discussed in previous

https://example.com/0
https://example.com/8
http://example.org/02332fb8-24b8-44bd-91be-cef3ef849926
https://github.com/w3c/webpayments-methods-card/pull/4

sections, we do not believe these specifications introduce any additional attack
surface other than that already possible.

Recommendation

None.

3.6 Does this specification enable new script execution/loading
mechanisms?

The overall system design includes the concept of payment app registration. While
the design for this is currently somewhat fluid, it will likely involve loading JS code
in a sandboxed context with communication between that payment app and
merchant web sites. This JS code will (presumably) run in the origin from which it
was loaded, preserving same-origin protections.

Recommendation

Revisit this question after the Working Group invocation approaches in the
Payment App API specification​.

3.7 Does this specification allow an origin access to a user’s location?

The Payment Request API provides for a means of collecting mailing address, which
is frequently correlated with a user’s residence and therefore location. The ability
to collect phone numbers provides a similar, if looser, capability, as components of
phone numbers typically correspond to countries, cities, and individual exchanges
(although the advent of number portability and mobile devices dilutes this
somewhat).

The Basic Card specification allows for the collection of billing addresses, which
have mostly the same properties as shipping addresses. It also provides credit card
numbers; the initial six digits of credit card numbers can be used to identify the
country of the issuing bank, which will typically correlate to the user’s home
country.

Recommendation

None.

https://w3c.github.io/webpayments/proposals/paymentapps/payment-apps.html

3.8 Does this specification allow an origin access to sensors on a user’s
device?

No. Individual native payment applications may access such devices (e.g., using
mobile phone cameras to read credit card numbers, magnetic stripe/chip readers to
read cards, or biometrics to authenticate users), but those behaviors are outside the
purview of the reviewed specifications.

Recommendation

None.

3.9 Does this specification allow an origin access to aspects of a user’s
local computing environment?

The Payment Request API, in conjunction with the anticipated Payment App API,
allows access to installed payment apps -- both browser-based and native. This
allows for programmatic determination of whether certain apps are installed (e.g.,
if the Bobpay mobile app registers with installed web browsers, then web pages can
probe to determine whether users have the Bobpay mobile app installed -- see the
response to section 3.4 for a discussion how how this probing can take place).

Recommendation

None.

3.10 Does this specification allow an origin access to other devices?

No. See also the response to section 3.8, as it is possible to imagine scenarios such as
bluetooth-attached devices.

Recommendation

None.

3.11 Does this specification allow an origin some measure of control over
a user agent’s native UI?

Through the Payment Request API, web pages indicate supported payment methods
and instruct the browser to collect additional information from the user. These
options will impact the native dialog (or other UI construct) used by the browser to
allow users to select a preferred payment app and to enter/approve the requested
additional information. These UI changes are expected to be scoped exclusively to
the payment flow UI, and should not otherwise affect the browser’s appearance.

Recommendation

None.

3.12 Does this specification expose temporary identifiers to the web?

No. These specifications expose identifiers to the web (as described in previous
sections), but those identifiers are not temporary.

Recommendation

None.

3.13 Does this specification distinguish between behavior in first-party
and third-party contexts?

The Payment Request API has an ongoing discussion regarding whether the API can
be invoked in a third-party context. See the github issue “​Should the Payment
Request API only be available in a top-level browsing context?​” and the ​minuted
discussion​ from the 12 May 2016 interim meeting.

Recommendation

Revisit this question after the group addresses the security issue about top-level
browsing context.

https://github.com/w3c/browser-payment-api/issues/2
https://github.com/w3c/browser-payment-api/issues/2
https://www.w3.org/2016/05/12-wpwg-minutes.html#item08
https://www.w3.org/2016/05/12-wpwg-minutes.html#item08

3.14 How should this specification work in the context of a user agent’s
"incognito" mode?

We anticipate that user agents will offer users the ability to grant specific web sites
persistent permission to access payment information. This will facilitate user
experiences such as “one click” product ordering and automated micropayments.

Recommendation

When operating in an “incognito” mode, we would expect the Payment Request API
to remain available; however, we recommend that any such persistent permission
be ignored in such a mode (otherwise, websites with such persistent permission
would be able to identify users via their payment details). The user agent would
still make stored user information available -- similar to how the web browser
assists in filling out form information even when incognito; however, such
information would be inaccessible to the merchant web site until submitted by the
user. Assistance is expected, automation is not.

When operating in incognito mode, it is probably also advisable to take additional
steps, possibly at the expense of usability, to frustrate attempts to determine
whether the user has registered payment apps that support specific payment
methods. For example, always prompting the user when a payment request is
made, even if there are no matching payment apps available, may serve such a
purpose. Note, however, that this would need careful consideration, as web sites
might determine from such behavior that the user is browsing in an incognito
context.

When the Payment Request API is invoked in an incognito context, we suggest that
any web-based payment apps also be invoked in an incognito context. This will
generally prevent such sites from accessing any previously-stored information; this,
in turn, will require users to either log in to the payment app or re-enter payment
instrument details.

The Payment Request API specification should thus include discussion on browser
behavior in incognito mode.

3.15 Does this specification persist data to a user’s local device?

The overall system anticipates a model in which payment apps are registered with
the browser in a persistent fashion. The considerations for such persistent
registration will presumably be treated in the document that defines the means of
registration (​Payment App API​).

https://w3c.github.io/webpayments/proposals/paymentapps/payment-apps.html

There is nothing inherent in the Payments Request API or the Basic Card Payment
spec that persistently stores origin-scoped data. The user agent may (and probably
will) elect to store mediator-supplied data (e.g., email address, shipping address) on
behalf of the user. Payment apps are extremely likely to use existing web
technologies to store data, but nothing in the payment API requires such storage,
nor does it provide additional mechanism for storage.

Recommendation

None.

3.16 Does this specification have a "Security Considerations" and
"Privacy Considerations" section?

Neither the Payment Method Identifier nor the Basic Card Payment specifications
contain either of these sections.

Recommendation

The Payment Method Identifier specification should at least point to a URI spec
(e.g., RFC 3986) and its security considerations section.

This checklist analysis has indicated a number of privacy and security issues that
pertain to the Basic Card Payment spec, and they should be incorporated into the
document.

The Payment Request API document does contain privacy and security sections, but
they are much smaller than will ultimately be required. They should be updated to
reflect the issues discussed in this checklist analysis.

3.17 Does this specification allow downgrading default security
characteristics?

We do not believe that it does. Users of the Payment Request API are required to be
in a secure context.

Recommendation

At the moment, the Payment Request API indicates the need for operating from a
secure context only by means of WebIDL declaration and a somewhat terse note.
We recommend that the document include clearer, implementor-targeted prose
indicating this restriction.

Although the payment apps specification has not yet been taken up by the Working
Group, we also expect that it will require payment apps to run in secure contexts.
Information can be transferred between these two contexts using the Payment
Request API, but such transfer will be between secure contexts, and (we presume)
policed by the user agent.

Additional Notes

Although not explicitly listed in the questionnaire, dealing with financial data does
present some unique challenges. In particular, the greatest risk that isn’t covered in
the current documents or in the preceding checklist is that of payment provider
phishing attacks. For example, a web site may register itself as capable of handling
the “Basic Card” payment time; and, in fact, may provide valid information to the
merchant site. However, if malicious, this site may also exfiltrate the credit card
information for its own unauthorized use. The potential risks of installation of
payment applications must be very carefully explained to the user.

