
WS-CDL Primer

Date: 17th January 2005
Authors: Steve Ross-Talbot, Anthony Fletcher
Version: V0.1

Short Table of Contents

1. Introduction
2. WS-CDL Overview
3. Getting Started with WS-CDL
4. WS-CDL Advanced Topics
5. WS-CDL Related Topics
6. References
Table of Contents

1 Introduction
1.1 Prerequisites
1.2 Structure of this Primer
1.3 Notational Conventions

2 WS-CDL Overview
2.1 Using WS-CDL
2.2 The Business Case for WS-CDL
2.3 The Structure of WS-CDL
2.4 Methodology

3 Getting started with WS-CDL
3.1 An Example
3.2 Role, Relationships and Channels
3.3 Choreographies and Interactions

• Introduces race conditions, lock freedom
3.4 Simple Ordering
3.5 Work Units
3.6 Information Types
3.7 Bindings

4 WS-CDL Advanced Topics
4.1 Channels

• Channel Passing
• Race conditions and lock freedom

4.2 Complex Ordering with Work Units
4.3 Coordination
4.4 Finalization
4.5 Extensibility

5 WS-CDL Related topics
5.1 Java
5.2 .NET
5.3 BPEL4WS

5.4 Policy
5.5 Service Discovery

6 References and Appendicies

1. Introduction
1.1 Prerequisites
This primer assumes that the reader has the following prerequisite
knowledge:

• familiarity with XML (Extensible Markup Language (XML) 1.0
(Second Edition) [XML 1.0], XML Namespaces (Namespaces in XML
[XML Namespaces]), WSDL (Web Services Description Language) 1.1
and 2.0;

• some familiarity with XML Schema (XML Schema Part 1: Structures
[XML Schema: Structures] XML Schema Part 2: Datatypes [XML
Schema: Datatypes]), SOAP (Simple Object Access Protocol) 1.2;

• familiarity with basic Web services concepts such as Web service,
client, and the purpose and function of a Web service description.
(For an explanation of basic Web services concepts, see Web
Services Architecture [WS Architecture] Section 1.4 and Web Services
Glossary [WS Glossary] glossary. However, note the Web Services
Architecture document uses the slightly more precise terms
"requester agent" and "provider agent" instead of the terms "client"
and "Web service" used in this primer.)

No previous experience with WS-CDL is assumed.
1.2 Structure of this Primer
Section 2 presents an overview of WS-CDL. It segments the language and
describes what it can be used for and presents the business benefits that
can be gained from using WS-CDL. Finally a methodology is described
which provides a guide as to how to build a choreography.
Section 3 presents a hypothetical use case involving a market in which
buyers and sellers and supporting roles enact their business. It proceeds
step-by-step based on the methodology described in Section 2 through
the development of this simple example.
Section 4 introduces more advanced topics that deal with notions of
business collaborations and failure as well as complex ordering
constraints that can be described in WS-CDL.
Section 5 describes the relationships that WS-CDL has to some of the
other standards and technologies. This includes code generation to Java,
.NET and BPEL4WS, the relationship through the use of extensions to
Policy based technology and Service Discovery.

1.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC-2119 [RFC2119].
The following namespace prefixes are used throughout this document:
<Table>
This specification uses an informal syntax to describe the XML grammar
of a WS-CDL document:

• The syntax appears as an XML instance, but the values indicate the
data types instead of values.

• Characters are appended to elements and attributes as follows: "?"
(0 or 1), "*" (0 or more), "+" (1 or more).

• Elements names ending in ". . ." (such as <element. . ./> or
<element. . .>) indicate that elements/attributes irrelevant to the
context are being omitted.

• Grammar in bold has not been introduced earlier in the document,
or is of particular interest in an example.

• <-- extensibility element --> is a placeholder for elements from
some "other" namespace (like ##other in XSD).

• The XML namespace prefixes (defined above) are used to indicate
the namespace of the element being defined.

• Examples starting with <?xml contain enough information to
conform to this specification; other examples are fragments and
require additional information to be specified in order to conform.

An XSD is provided as a formal definition of WS-CDL grammar (see
Section 11 of the Web Services Choreography Description Language
Version 1.0 W3C Working Draft 17 December 2004).

2. An Overview of WS-CDL
The Web Services Choreography Description Language (WS-CDL) is an
XML-based language that can be used to describe the common and
collaborative behavior of multiple parties who need to interact in order to
achieve some goal. WS-CDL describes this behavior from a global or
neutral perspective rather than from the perspective of any one party.

2.1 Using WS-CDL
WS-CDL is not an executable language, hence the term “Description” in
it’s name. It is a language that can be used to unambiguously describe
business collaborations and their protocols within and across domains of
control.
In the case of the former it can be used to describe the internal workflows
within a domain that involves multiple end-points/services that
constitute collaborative behavior. The value in so doing is to ensure
continued conformance of services to an agreed choreography
description and to guarantee interoperability of services through an
agreed choreography description. This is no more than describing a
business protocol that defines a collaboration between services. You can
think of it as a way of ensuring services are well behaved with respect to
the goals that you want to achieve within your domain.
In the case of the latter it can be used to describe the business protocols
across domains such as the ordering of message exchanges that govern
vertical protocols such as fpML, FIX, TWIST and SWIFT. These protocols
have some form of XML data format definition and then go on to describe
the ordering of message exchanges using a combination of prose and
UML sequence diagrams. What WS-CDL provides in an unambiguous way
of describing the ordering of message exchanges and in so doing ensure
that the end points that participate in business collaborations based on
such vertical standards can be guaranteed to conform to the
choreography description. You can think of it as a way to ensure that
participants are well behaved with respect to their common goals across
domains.

2.2 The Business Case (reword)
WS-CDL can be used to ensure interoperability within and across domains
of control. In so doing WS-CDL can remove problems of interoperability
and so deliver business solutions within and across domains of control

that are more reliable with less downtime due to the errors in encoding a
business protocol.
WS-CDL can be used to ensure that the total cost of software systems in
a distributed environment, within a domain of control and across the
world-wide-web is lowered by guaranteeing that the services that
participate in a choreography are well behaved on a continuing basis.
Both of these benefits translate into more up-time and so increase top
line profits and at the same time they translate into less testing time and
so reduce cost of delivery which decreases bottom line costs.
2.3 The Structure of WS-CDL
WS-CDL is a layered language. It provides different levels of expressibility
to describe a choreography. These levels are shown below (a more
complete picture is provided by the UML description of WS-CDL in the
appendix):

Figure 1: The layering of WS-CDL
At the top most level for any WS-CDL there is a package which contains
all other things. All choreographies described in WS-CDL will include as a
minimum a set of Roles that are defined as some sort of behavior (i.e. a
WSDL description), Relationships between those roles, Channels used by
roles to interact and a Choreography block that uses the channels to
describe Interaction. What the choreography describes at this level is a
basic set of typed and unambiguous connections that enable the various
roles to collaborate in order to achieve some common goal.

Roles, Relationships, Channels

Choreography, Interaction

Structured composition

Non Observable Conditionals

Observable Conditionals

State Mgmt
No State Mgmt

Package W
orkunits , Exceptions, Finalizers

Choreographies that are described using only these features will be
uninteresting as there will be few ordering rules.
Adding further ordering rules through Structured composition allows
Interactions and Choreographies (which are just logical groupings of
interactions) to be combined into sequences, parallel activities and so on.
Adding Non-Observable Conditionals makes it is possible to model
branching based on observing changes in the interactions that occur – for
example one might observe an exchange between a buyer and a seller
which is said to be terminated when a “completed” interaction is
observed.
At this point it is not necessary to perform any explicit state management
at the roles that are interacting because we have not needed to express
any observable conditions. By this we mean that none of roles used in
choreographies at this level have any notion of shared state, rather they
observe interactions that are visible and use the observations to
determine their state with respect to the other roles.
Some business protocols are defined with specific business rules visible.
These constitute shared knowledge between the roles concerned, for
example we might terminate an order completion between a buyer and a
seller when we calculate that the items delivered match the original order.
The business rule in this example is the shared constraint that
buyer_quantity equals completion_quantity. At some level the roles must
have some shared knowledge of both variables and their values. When
business rules of this nature become part of the business protocol such
Observable Conditionals can be added into a choreography and this now
implies state management is needed.
State management requires an amount of machinery to ensure that state
is known globally when needed or at least between roles when needed.
The machinery required to deliver this in practice is some coordination
mechanism that will ensure data is delivered to all roles that require it.

2.4 Methodology
Given that WS-CDL is a language that described interaction between roles
it is natural to look first for the roles that will interact. This is the starting
point for any choreography. The methodology described herein
documents a process that can be used to guide the user in creating a
choreography.

1. Identify the role that will interact
2. Defining the relationships

• between the roles that will communicate
3. Define the channels

• that will be used to connect the roles together
• directionality: Who receives and who initiates

4. Group the roles into participants
5. Sketch the choreographies (a grouping of high level logical

interactions)
6. Define the interactions

• Channel variables, Information Types
7. Define state management

• Records, variables
8. Refine the choreographies (by grouping into finer grain

interactions)
• Work Units, Finalization

This process is not the only process that can be used to define
choreographies but we have found it generally consistent in using the
WS-CDL to describe complex business protocols.

