W3C WebRTC
WG Meeting

December 7, 2022
8 AM - 10 AM



W3C WG IPR Policy

e This group abides by the W3C Patent Policy
https://www.w3.org/Consortium/Patent-Policy/

e Only people and companies listed at
https://www.w3.0rg/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs



https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the December 2022 interim
meeting of the W3C WebRTC WG, at which

we will cover:
o Stuff

e Future meetings:

o January 17
February 21
March 21
April 18
May 16
June 20

O O O O O


https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/January_17_2023
https://www.w3.org/2011/04/webrtc/wiki/February_21_2023
https://www.w3.org/2011/04/webrtc/wiki/March_21_2023
https://www.w3.org/2011/04/webrtc/wiki/April_18_2023
https://www.w3.org/2011/04/webrtc/wiki/May_16_2023
https://www.w3.org/2011/04/webrtc/wiki/June_20_2023

About this Virtual Meeting

Meeting info:

©)

https://www.w3.0rg/2011/04/webrtc/wiki/December 7 2022

Link to latest drafts:

@)

0O O OO0 OO0 O o o0 O O O O o

O

https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.qithub.io/mediacapture-record/
https://w3c.qithub.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/

https://w3c.qithub.io/webrtc-stats/
https://w3c.qithub.io/mst-content-hint/

https://w3c.qgithub.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://qithub.com/w3c/webrtc-svc
https://qithub.com/w3c/webrtc-ice

Link to Slides has been published on WG wiki

Scribe? IRC http://irc.w3.org/ Channel: #webrtc

The meeting is (still) being recorded. The recording will be public.
Volunteers for note taking?



https://www.w3.org/2011/04/webrtc/wiki/December_7__2022
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/December_07_2022
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct

e This meeting operates under W3C Code of Ethics and
Professional Conduct

e We're all passionate about improving WebRTC and the

Web, but let's all keep the conversations cordial and
professional


https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips

This session is (still) being recorded
e Type +q and -q in the Google Meet chat to get into and out
of the speaker queue.
Please use headphones when speaking to avoid echo.
Please wait for microphone access to be granted before
speaking.
Please state your full name before speaking.

Poll mechanism may be used to gauge the “sense of the
room”.



Understanding Document Status

e Hosting within the W3C repo does not imply adoption by the
WG.
o WG adoption requires a Call for Adoption (CfA) on the
mailing list.
e Editor’s drafts do not represent WG consensus.
o WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.
o Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.



Issues for Discussion Today

e 08:10 - 08:30 WebRTC Network of User’s Project (Tim Panton)
e (08:30 - 08:50 WebRTC-NV Use Cases (Bernard)

e (08:50 - 09:45 Encoded-Transform (Harald & Fippo)

e 09:45-10:00 WebRTC-PC (Jan-lvar)

Time control;

e A warning will be given 2 minutes before time is up.
e Once time has elapsed we will move on to the next item.



WebRTC Network of Users Project (Tim)
Start Time: 08:10 AM
End Time: 08:30 AM



https://Webrtc.nu

® FeedbaCk path from developers W3C WebRTC Working Group

to WG : v\

Browser Vendors

e 12 invited members to help

QUide it WebRTC API Input/Feedbac
e First activity is a survey of WeBRTC APP developers
unresolved questions from Ny

h e re . WebRTC Network of Users




Survey results - who replied?

| found this survey on:

s

63 responses

@® GitHub

@ Linkedin

@ Meetup

@ Twitter

@ Mastodon

@ Kranky Geek

@ twitter

® WebRTC Insights

13V

11



Survey results - what do they do?

Regarding your dev experience with the WebRTC API

66 responses

@ | work with the WebRTC APIs every day
@ | regularly use the WebRTC APIs

@ | occasionally need to use WebRTC
APls

@ | only use WebRTC via an SDK or
library - never the W3C APIs directly

@ | manage a team who use the WebRTC
APls

@ | have never used the WebRTC APls

12



Survey results - feelings about async?

Regarding Async functions in JavaScript APIs
66 responses

@ Async functions make life easy

@ Async functions can make APIs cleaner,
but do add complexity

@ Async functions are to be avoided if
possible

@ Callbacks forever
@ !'ve not done any work in this area

13



Survey results - do they even munge?

Regarding SDP munging, your WebRTC (in-browser) JavaScript:

65 responses

@ Rewrites SDP often

@ Occasionally rewrites SDP, because
suitable APIs don't exist

@ Never rewrites SDP
@ !'ve not done any work in this area

14



Survey results - datachannel usage

Regarding Data channels in Web Workers, your WebRTC application or SDK:

64 responses

@ Doesn't use data channels
@ Uses data channels on the main thread

@) Uses data channels, but it would be
better if they could run in their own
workers

@ !'ve not done any work in this area

15



Survey results - how hard is this to learn?

Regarding learning the API, in your experience, developers new to WebRTC find it:

65 responses

4

@ Easy to pick up

@ Complex, but okay

@ Very difficult

@ A reason to change jobs

@ !'ve not done any work with the
WebRTC API

16



| found this survey on:

g

63 responses

Regarding your dev experience with the WebRTC API

66 responses

18:2%  10.6%

Regarding Async functions in JavaScript APIs
66 responses

@ GitHub

@ Linkedin

@ Meetup

@ Twitter

@ Mastodon

@ Kranky Geek

@ twitter

@ WebRTC Insights

13V

@ | work with the WebRTC APlIs every day
@ | regularly use the WebRTC APIs

@ | occasionally need to use WebRTC
APIs

@ | only use WebRTC via an SDK or
library - never the W3C APlIs directly

@ | manage a team who use the WebRTC
APIs

@ | have never used the WebRTC APIs

@ Async functions make life easy

@ Async functions can make APls cleaner,
but do add complexity

@ Async functions are to be avoided if
possible

@ Callbacks forever
@ I've not done any work in this area

Regarding SDP munging, your WebRTC (in-browser) JavaScript:

65 responses

@ Rewrites SDP often
@ Occasionally rewrites SDP, because
suitable APIs don't exist

@ Never rewrites SDP
@ I've not done any work in this area

Regarding Data channels in Web Workers, your WebRTC application or SDK:

64 responses

34.4%
9.4%

28.1%
28.1%

@ Doesn't use data channels
@ Uses data channels on the main thread

@ Uses data channels, but it would be
better if they could run in their own
workers

@ I've not done any work in this area

Regarding learning the API, in your experience, developers new to WebRTC find it:

65 responses

@ Easy to pick up

@ Complex, but okay

@ Very difficult

@ A reason to change jobs

@ !I've not done any work with the
WebRTC API



Survey: was that useful?

e Did we learn anything?
e Do we have more questions?

Tip of the hat to Patrick Rockhill

18



Next (End Time: 08:30)

More surveys

More outreach

Prototyping APl ideas

Finding good stuff from other WebRTC APls

19



WebRTC-NV Use Cases (Bernard)
Start Time: 08:30 AM
End Time: 08:50 AM

20



For Discussion Today

e Use Cases (going to CfC in January)
o Section 3.2.1: Game streaming
o Section 3.2.2: Low latency Broadcast with Fanout
o Section 3.5: Virtual reality gaming

e [ssues (Harald)
o Issue 81: Transport pre-encoded live content over RTP
o |ssue 82: Transmit stored pre-encoded content over RTP
o lIssue 106: “One-ended” Use Cases

21


https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://www.w3.org/TR/webrtc-nv-use-cases/#vr*
https://github.com/w3c/webrtc-nv-use-cases/issues/81
https://github.com/w3c/webrtc-nv-use-cases/issues/82
https://github.com/w3c/webrtc-encoded-transform/issues/106

Section 3.2.1: Game streaming

§ 3.2.1 Game streaming

Game streaming involves the sending of audio and video (potentially at high resolution and framerate) to the
recipient, along with data being sent in the opposite direction. Games can be streamed either from a cloud
service (client/server), or from a peer game console (P2P). It is highly desirable that media flow without
interruption, and that game players not reveal their location to each other. Even in the case of games streamed
from a cloud service, it can be desirable for players to be able to communicate with each other directly (via chat,
audio or video).

NOTE

This use case has not completed a Call for Consensus (CfC).

o
ID

N15 The application must be able to control aspects of the data transport (e.g. set the SCTP
heartbeat interval or turn it off), RTO values, etc.

N37 It must be possible for the user agent's receive pipeline to process video at high resolution
and framerate (e.g. without copying raw video frames).

N38 The application must be able to control the jitter buffer and rendering delay.

Experience: XCloud, Rainway, GeForce Now and Stadia are examples of this use case, with media transported
using WebRTC A/V or RTCDataChannel.

22


https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming

Section 3.2.1: Game streaming (cont’d)

e Requirements N37 and N38 relate to performance

o N37 may require support for hw-accelerated decode.
o Lots of known issues w/hw-acceleration, including handling of decode errors.
o Potential missing requirements
m Support for custom FEC. May be appealing at high resolutions (4K) and
frames rates (60 fpbs).

e Should requirement N15 be included?
o Media typically flows from server->browser
m Server can implement its own custom transport, including congestion
control.
m Same dynamic in P2P game streaming where game console (native
application) streams to a mobile device (browser).
o What about browser -> server flows?
m Does N15 apply to input sent to server from a game console?

23


https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming

Section 3.2.2: Low latency Broadcast with Fanout

§ 3.2.2 Low latency Broadcast with Fanout F

There are streaming applications that require large scale as well as low latency. Examples include sporting
events, church services, webinars and company 'Town Hall' meetings. Live audio, video and data is sent to
thousands (or even millions) of recipients. Limited interactivity may be supported, such as allowing authorized
participants to ask questions at a company meeting. Both the media sender and receivers may be behind a NAT.
P2P relays may be used to improve scalability, potentially using different transport than the original stream.

This use case has not completed a Call for Consensus (CfC).

ID

N15 The application must be able to control aspects of the data transport (e.g. set the SCTP
heartbeat interval or turn it off), RTO values, etc.

N36 Support for DRM (containerized media) or uncontainerized media.

N39 A node must be able to forward media received from another node to a third node.

Applications require access to encoded chunk metadata as well as information from the RTP
header to provide for timing, media configuration and congestion control. This includes a
mechanism for a relaying peer to obtain a bandwidth estimate.

Experience: pipe, Peer5 and Dolby are examples of this use case, with media transported using WebRTC A/V or
RTCDataChannel.

24


https://www.w3.org/TR/webrtc-nv-use-cases/#auction

Section 3.5: Virtual reality gaming

S 3.5 Virtual Reality Gaming

A virtual reality gaming service utilizing a centralized conferencing server wants to synchronize data with media,
using an existing Selective Forwarding Unit (SFU) to distribute the data. This use case adds the following

requirements:

N23 The user agent must be able to send data synchronized with audio and video.
N24 Content Security Policy (CSP) support for WebRTC.
References:

Mailing list discussion

25


https://www.w3.org/TR/webrtc-nv-use-cases/#vr*

Section 3.5: Virtual reality gaming (cont’d)

e Are the requirements complete?
o Virtual reality games often support spatial audio
m Can be implemented via “bring your own codec”

26


https://www.w3.org/TR/webrtc-nv-use-cases/#vr*

Issue 106: “One-ended” Use Cases

e Post from Harald on August 27, 2022:

O

Encoded data access - Requirements for a new API from Harald Alvestrand
on 2022-08-27 (public-webrtc@w3.org from August 2022)

e Envisioned applications:

@)
©)

End to end encryption (app-controlled) of video and audio streams

“SFU in the browser”: selective forwarding of encoded frames to other
network entities (“Live broadcast with fanout”)

Alternative transport: moving frames over mechanisms other than RTP.
Alternative generators: Generating frames using other mechanisms such as
WebCodecs rather than WebRTC (NV issue 81, 82)

Alternative consumers: Feeding frames to WebCodecs, MSE-type
mechanisms or other destinations rather than WebRTC for decoding
Integration with MSE-type content protection mechanisms

27


https://github.com/w3c/webrtc-encoded-transform/issues/106
https://lists.w3.org/Archives/Public/public-webrtc/2022Aug/0032.html
https://lists.w3.org/Archives/Public/public-webrtc/2022Aug/0032.html

.

Issue 106: “One-ended” Use Cases

One-ended use cases:
a. WebRTC codec, encoded data carried over another transport (such as Datachannel or
WebTransport)

i. Use case: P2P datachannel caching of WebRTC-streamed content to improve
scalability. Application combines WebRTC reception with P2P relay over
datachannel.

ii. Use case: Ingestion of encoded media using RUSH or MoQ. Useful if there is a
browser that supports Encoded Transform + WebTransport but not WebCodecs.

iii. Use case: conference system using WebTransport or datachannel transport. Useful
if there is a browser that supports Encoded Transform + datachannel or
WebTransport (but not WebCodecs).

b. WebCodec codec, encoded data sent over a PeerConnection (RtpTransport)

i. Use case: Utilizing a WebCodecs encoder feature that isn’t supported in WebRTC
(per-frame QP, AV1 screen content coding if that is supported in WebCodecs but not
WebRTC)

c. Decode data received via RTP over a PeerConnection using WebCodecs or MSE

i. Use case: Utilizing a WebCodecs decoder that isn’t supported in WebRTC (HEVC
hw decode)

ii. Use case: Decrypt E2E encrypted media, then decode with WebCodecs.

d. Encoded data feeding into a timing adjuster (NetEq) that uses WebCodec to decode and
play out time-adjusted data.

i. Use case: co-watching? (Sporting event streamed via WebCodecs over
WebTransport combined with a conference using WebRTC).

ii. Use case: AR/VR? (Virtual world streamed via WebCodecs over WebTransport
combined with a conference using WebRTC projected onto a virtual surface)

iii. Use case: Multiple speakers within hearing distance of each other.

e. WebRTC codec, RTP transport, encoded data received via one PC and relayed (for

oarnalahilify/) viia rmiilfinla A1itaaina RDTD tranenarte adAdadAd A liet NAav 20\

28


https://github.com/w3c/webrtc-encoded-transform/issues/106

Issue 81: Transport pre-encoded live content over RTP

This use case has come up in a couple of contexts, including one where the
requester wanted to:

a. Install a video camera that delivered pre-encoded H.264 data (on an
interface independent of WebRTC)

b. Send the resulting video stream out over a WebRTC RTP connection (for
instance, as part of a video surveillance service that otherwise used RTP
transmission)

| (hta) think this can be satisfied with the following interfaces:

a. Create encoded video frames based on existing encoded data +
metadata

b. Enqueue the encoded video frames on an outgoing RTCRtpSender

c. Take signals from the RTCRtpSender to reconfigure the camera to
provide encoding of the appropriate bandwidth

29


https://github.com/w3c/webrtc-nv-use-cases/issues/81

Issue 82: Transmit stored pre-encoded content over RTP

This has come up in a couple of contexts, including the provision of "wait signals" and the insertion of
pre-recorded segments into an otherwise live conference application.

The important points are:

e The media is pre-recorded (but the media may be available in multiple formats/qualities)
e The desired transmission mechanism is RTP

| (hta) think this can be achieved by:

e Providing a means to create frames based on existing encoded video + metadata

e Providing a means to enqueue those frames on an existing RTCRtpSender

e Providing a means to take signals from the RTCRtpSender about available bandwidth and requests
for new keyframes and have them processed in an application-specific manner

Responses to congestion signals may involve switching the source of frames to a lower quality source
(much like DASH does), or it may involve switching the source to a video showing "wait a bit", or it may
involve frame decimation of some kind (assuming the signal is encoded in a decimation-compatible
format such as an SVC encoding). These decisions don't need to be part of the WebRTC component.

30


https://github.com/w3c/webrtc-nv-use-cases/issues/82

Use Cases That Might Not Be Covered (Peter)

e Bring your own (web) codec
o Example: HEVC over RTP
o Needs a packetization API? (can’t assume it is already in WebRTC)
e Bring your own FEC
o Example: My FEC is better than what’s built into the browser
o Needs a packetization API?
m Butis it enough to just inject many small “video frames” that are 1 MTU
each?
e SFU Between “RTP over QUIC” and “RTP over UDP”
o You might need to control RTP packetization...

31



Discussion (End Time: 08:50)

32



Encoded Transform (Harald)
Start Time: 08:50 AM

End Time: 09:10 AM

33



Encoded Media Manipulation - beyond Bump-In-Stack

e Unlocks several interesting use cases
o Relay without JS JS

decoding/decrypting

o Send over non-RTP transports @ \X/

o Send pre-encoded media

e Issues /PR on nv-use-cases @7 %

e PR for explainer to encoded-media



https://github.com/w3c/webrtc-nv-use-cases/issues/77
https://github.com/w3c/webrtc-nv-use-cases/pull/79
https://github.com/w3c/webrtc-encoded-transform/pull/164

API design - known requirements

e Must be usable within the PeerConnection/RTP

ecosystem
o Not contemplating greenfield designs

e Must allow frames that are not created by
PeerConnection

e Must allow both sending and decoding of such
frames

35



API design - uncertain requirements

e Must allow congestion control to work

o Take signals from sender about how much to
produce

e Must allow stream repair to work
o Treat “request keyframe” properly

e May need to allow resolution negotiation

o Destination may have opinions on what it can
consume



Incremental API design

e Address known requirements first

o Create frame from data + metadata
o Modify frame metadata (we can already adjust data)
o Add a clone() method for simplicity (PR)

e Take time to firm up uncertain requirements
o Sketch in the IETF hackathon git repository
o No formal proposal yet



https://github.com/w3c/webrtc-encoded-transform/pull/163
https://github.com/alvestrand/hackathon-encoded-media/blob/main/API.md
https://github.com/alvestrand/hackathon-encoded-media

WG decisions requested (aspirational)

e Agree that addressing these use cases is
within the scope of the WG

e Agree that incremental APl development is
an OK approach

e CfC on Low Latency Streaming Use Cases
(3.2.1 and 3.2.2)

e Agree that creating encoded frames is a
required first step, and can be done ~now



Discussion (End Time: 09:10)

39



Encoded Transform Issues (fippo)
Start Time: 09:10 AM

End Time: 09:45 AM

40



For Discussion Today

Issue 143/PR 165: make generateKeyFrame() take a list of rids

and return undefined

Issue 167: Timing Metadata
Issue 168: RTP metadata

Issue 166/PR 154: RTP sequence number

Issue 147: RID/MID

Issue 169: add RTP timestamp to metadata

Issue 158/PR 140: mimeType metadata

Issue 170: Incompatible SVC metadata

41


https://github.com/w3c/webrtc-encoded-transform/issues/143
https://github.com/w3c/webrtc-encoded-transform/pull/165
https://github.com/w3c/webrtc-encoded-transform/issues/167
https://github.com/w3c/webrtc-encoded-transform/issues/168
https://github.com/w3c/webrtc-encoded-transform/issues/166
https://github.com/w3c/webrtc-encoded-transform/pull/154
https://github.com/w3c/webrtc-encoded-transform/issues/147
https://github.com/w3c/webrtc-encoded-transform/issues/169
https://github.com/w3c/webrtc-encoded-transform/issues/158
https://github.com/w3c/webrtc-encoded-transform/pull/140
https://github.com/w3c/webrtc-encoded-transform/issues/170

Issue 143/PR 165: make generateKeyFrame() take a list of rids and return
undefined

e |ssue 143 discussed during October interim
o Resolution: “pass an array arguments to generateKeyframes”
e PR 165 implements the resolution
o Takes a list of rids
m Must be negotiated rids
m Empty lists means “all of them”
o No return value
m Since the encoder might be currently unable to generate a
key frame
e Proposal:
o Merge PR 165

42


https://github.com/w3c/webrtc-encoded-transform/issues/143
https://github.com/w3c/webrtc-encoded-transform/pull/165
https://github.com/w3c/webrtc-encoded-transform/issues/143
https://www.w3.org/2022/10/18-webrtc-minutes.html#t03
https://github.com/w3c/webrtc-encoded-transform/pull/165
https://github.com/w3c/webrtc-encoded-transform/pull/165

Issue 143/PR 165: make generateKeyFrame() take a list of rids and return
undefined (cont’d)

</pre>
<table data-link-for="RTCEncodedVideoFrameType" data-dfn-for=
"RTCEncodedVideoFrameType" class="simple">
<caption>Enumeration description</caption>
<caption>Enumeration description</caption>
<thead>
<tr>

<th>Enum value</th><th>Description</th>

readonly attribute ReadableStream readable;

readonly attribute WritableStream writable;

readonly attribute any options;

Promise&lt;unsigned long long&gt; generateKeyFrame(optional DOMString rid);
undefined generateKeyFrame(optional sequence&lt;DOMString&gt; rids);
Promise&lt;undefined&gt; sendKeyFrameRequest();

1. Set |transformer|.’ [[encoder]]’ to |encoder|.
1. Set |transformer|.’ [[depacketizer]]' to |depacketizer|.

The <dfn method for="RTCRtpScriptTransformer">generateKeyFrame(|rid|)</dfn> method steps are:
1. Let |promise| be a new promise.

1. Run the [=generate key frame algorithm=] with |promise|, |this|.'[[encoder]]’ and |rid|.

1. Return |promise|.

The <dfn method for="RTCRtpScriptTransformer">generateKeyFrame(|rids|)</dfn> method steps are:

1. Run the [=generate key frame algorithm=] with the {{RTCRtpSender}} associated with |this|.' [[encoder]]" and



https://github.com/w3c/webrtc-encoded-transform/issues/143
https://github.com/w3c/webrtc-encoded-transform/pull/165

Issue 143/PR 165: make generateKeyFrame() take a list of rids and r
undefined (cont’d)

The <dfn>generate key frame algorithm</dfn>, given |promise|, |encoder| and |rid|, is defined by running these steps:
1. If |encoder| is undefined, reject |promise| with {{InvalidStateError}}, abort these steps
1. If |encoder| is not processing video frames, reject |promise| with {{InvalidStateError}}, abort these steps.
1. If |rid| is defined, validate its value. If invalid, reject |promise| with {{NotAllowedError}} and abort these steps
1. [=In parallel=], run the following steps:
1. Gather a list of video encoders, named |videoEncoders| from |encoder|, ordered according negotiated RIDs if any.
1. If |rid| is defined, remove from |videoEncoders| any video encoder that does not match |rid|.
1. If |rid| is undefined, remove from |videoEncoders| all video encoders except the first one.
If |videoEncoders| is empty, reject |promise| with {{NotFoundError}} and abort these steps
|videoEncoders| is expected to be empty if the corresponding {{RTCRtpSender}} is not active, or the corresponding {{RTCRtpSender}} track is
Let |videoEncoder| be the first encoder in |videoEncoders|.
If |rid| is undefined, set |rid| to the RID value corresponding to |videoEncoder|
Create a pending key frame task called |task| with |task|. [[rid]]’ set to rid and |task|.' [[promise]]’| set to |promise|
. If |encoder|.’ [[pendingKeyFrameTasks]]' is undefined, initialize |encoder|.' [[pendingKeyFrameTasksl]' to an empty set
Let |shouldTriggerKeyFrame| be <code>true</code> if |encoder|.'[[pendingKeyFrameTasks]]' contains a task whose " [[rid]]
value is equal to |rid|, and <code>false</code> otherwise.
Add |task| to |encoder|.' [[pendingKeyFrameTasks]]"

. If |shouldTriggerKeyFrame| is <code>true</code>, instruct |videoEncoder| to generate a key frame for the next provided video frame.

For any {{RTCRtpScriptTransformer}} named |transformer|, the following steps are run just before any |frame| is enqueued in |transformer|.'[[readablel]":
1. Let |encoder| be |transformer|.'[[encoder]]’.
1. If |encoder| or |encoder|.’ [[pendingKeyFrameTasks]]' is undefined, abort these steps.
1. If |frame| is not a video {{RTCEncodedVideoFrameType/"key"}} frame, abort these steps.
1. For each |task| in |encoder|.’ [[pendingKeyFrameTasks]]', run the following steps:
1. If |frame| was generated by a video encoder identified by |task|.'[[ridl]l", run the following steps
1. Remove |task| from |encoder|.'[[pendingKeyFrameTasks]]".
1. Resolve |task|.'[[promise]]’ with |frame|'s timestamp.

By resolving the promises just before enqueuing the corresponding key frame in a {{RTCRtpScriptTransformer}}'s readable,
the resolution callbacks of the promises are always executed just before the corresponding key frame is exposed.
If the promise is associated to several rid values, it will be resolved when the first key frame corresponding to one the rid value is enqueued.
The <dfn>generate key frame algorithm</dfn>, given |sender| and |rids|, is defined by running these steps:
1. If the sender's transceiver kind is not ‘video', return an {{OperationError}} and abort these steps.
1. If |rids| is defined, for each |rid| in rids,
1. if |rid| is not associated with |sender|, return an {{InvalidAccessError}} and abort these steps.
1. Instruct the encoder associated with |sender| to generate a key frame for |rids| or all layers when |rids| is empty.



https://github.com/w3c/webrtc-encoded-transform/issues/143
https://github.com/w3c/webrtc-encoded-transform/pull/165

Issue 167: Timing Metadata

e Timing Model discussed at November VI
o VideoFrameCallbackMetaData in rVEC specification
m Includes receiveTime, captureTime, rtpTimestamp, mediaTime
m [ssue 601: Expose in VideoFrame
o Resolution: “file specific issues on specific specs”
m Issue 167 filed on encoded transform
m |ssue 88 filed on mediacapture transform
e Proposal: add timing metadata to RTCEncoded*Metadata
o receiveTime as defined in rVFC
o captureTime (#137, #159, defined in rVEC)

45


https://github.com/w3c/webrtc-encoded-transform/issues/167
https://www.w3.org/2022/11/15-webrtc-minutes.html#t06
https://wicg.github.io/video-rvfc/#video-frame-metadata-callback
https://wicg.github.io/video-rvfc/#video-frame-metadata-callback-attributes
https://github.com/w3c/webcodecs/issues/601
https://github.com/w3c/webrtc-encoded-transform/issues/167
https://github.com/w3c/mediacapture-transform/issues/88
https://wicg.github.io/video-rvfc/#video-frame-metadata-callback-attributes
https://github.com/w3c/webrtc-encoded-transform/pull/137/
https://github.com/w3c/webrtc-encoded-transform/issues/159
https://wicg.github.io/video-rvfc/#video-frame-metadata-callback-attributes

Issue 168: RTP metadata

e |ssue 160: overall requirements arising from the “Low

Latency Broadcast with Fanout” use case.

o Issue 161: Add a clone operator

o Issue 162: Need to modify PT, SSRC, CSRC in metadata
e |ssue 168 tracks need for more complete RTP header

metadata
o Not just PT, SSRC, [CSRC], but also:

Issue 166: sequence number

Issue 147: MID/RID

Issue 169: RTP timestamp (in metadata)

Marker bit
[header extensions]

46


https://github.com/w3c/webrtc-encoded-transform/issues/168
https://github.com/w3c/webrtc-encoded-transform/issues/160
https://w3c.github.io/webrtc-nv-use-cases/#auction
https://w3c.github.io/webrtc-nv-use-cases/#auction
https://github.com/w3c/webrtc-encoded-transform/issues/161
https://github.com/w3c/webrtc-encoded-transform/issues/162
https://github.com/w3c/webrtc-encoded-transform/issues/166
https://github.com/w3c/webrtc-encoded-transform/issues/147
https://github.com/w3c/webrtc-encoded-transform/issues/169

Miscellaneous metadata

e mimeType (Issue 158 / PR 140)

o resolved from payload type
o Presented at October VI
o Details in Slide 46

e Codec-specific metadata like
o width, height (issue 138: only incoming frames?)
o Audio level, voice activity bit

47


https://github.com/w3c/webrtc-encoded-transform/issues/158
https://github.com/w3c/webrtc-encoded-transform/pull/140
https://www.w3.org/2022/10/18-webrtc-minutes.html#t04
https://github.com/w3c/webrtc-encoded-transform/issues/138

Issue 166/PR 154: RTP sequence number

e Use case: Low Latency Broadcast with Fanout
e PR 154: incoming audio RTP sequence number
o Incoming audio only, more complex for video
e Proposal:
o Merge PR 154

48


https://github.com/w3c/webrtc-encoded-transform/issues/166
https://github.com/w3c/webrtc-encoded-transform/pull/154
https://w3c.github.io/webrtc-nv-use-cases/#auction
https://github.com/w3c/webrtc-encoded-transform/pull/154
https://github.com/w3c/webrtc-encoded-transform/pull/154

Issue 147: MID/RID

e mid
o transform needs to know from which transceiver it is receiving
things from
o Can use SSRC but...
e rid
o transform needs to know from which rid/layer it is sending
things for in simulcast
o Can use SSRC but...
e Proposal:

o add mid and rid to metadata

49


https://github.com/w3c/webrtc-encoded-transform/issues/147

Issue 169: add RTP timestamp to metadata

e RTCENcodedAudioFrame/VideoFrame
o readonly attribute unsigned long timestamp
o This is the RTP timestamp!
o Problem: timestamp can’t be modified
e Proposal: add to respective metadata
o Deprecate on main object
o Remove from implementations for 1-2 releases
o Re-add as defined in WebCodecs
readonly attribute long long timestamp

50


https://github.com/w3c/webrtc-encoded-transform/issues/169
https://w3c.github.io/webrtc-encoded-transform/#RTCEncodedVideoFrame-interface

Issue 158/PR 140: mimeType metadata

e October resolution: add mimeType
e Additional questions
o Raw mimetype
m Sufficient to tell VP8, H264 apart
m Not sufficient to tell H264 profile levels apart
o Do we need fmtp?
m \We have that in codec stats

e Proposal:
o merge mimetype PR 140
o add fmtp once someone commits to implement

51


https://github.com/w3c/webrtc-encoded-transform/issues/158
https://github.com/w3c/webrtc-encoded-transform/pull/140
https://www.w3.org/2022/10/18-webrtc-minutes.html#t04
https://github.com/w3c/webrtc-encoded-transform/pull/140

Issue 170: Incompatible SVC metadata

e \WebCodecs defines EncodedChunkMetadata as follows:

dictionary EncodedVideoChunkMetadata {
VideoDecoderConfig decoderConfig;
SvcOutputMetadata svc;
BufferSource alphaSideData;

};

dictionary SvcOutputMetadata {
unsigned long temporallayerld;

5

e Dictionary has structure to allow for future expansion of
SvcOutputMetadata dictionary.

52


https://github.com/w3c/webrtc-encoded-transform/issues/170
https://www.w3.org/TR/webcodecs/#encoded-video-chunk-metadata

Issue 170: Incompatible SVC metadata (cont’d)

e Complete WebCodecs SVC metadata proposal is based on the information included within
the Dependency Descriptor RTP header extension:

dictionary EncodedVideoChunkMetadata {
// Number for identifying this frame in |dependsOnIds| and |chainLinks| (for other chunks).
unsigned short frameNumber;

// List of frameNumbers that this chunk depends on. Used to detect/handle network loss. Decoding out of order is an error.
list<unsigned long> dependsOnlds;

// IDs of the spatial layer and temporal layer this chunk belongs to.
unsigned long spatiallayerId;
unsigned long temporallLayerld;

// List of decoder targets this frame participates in. Used to know whether this frame should be sent (forwarded) to a given
receiver depending on what decode targets the receiver is expecting. Decode target is a numerical index determined by the
encoder. No commitment that a particular number implies a given layer.

list<unsigned long> decodeTargets;

// Mapping of decode target -> the last important frame to decode prior to "this" frame for the given decode target.
// Used to ensure we preserve decode order for the desired decode target. It is insufficient to simply satisfy the
dependencies for the current frame. See example.

map<unsigned long, unsigned long> chainlLinks;

s 53


https://github.com/w3c/webrtc-encoded-transform/issues/170
https://aomediacodec.github.io/av1-rtp-spec/#dependency-descriptor-rtp-header-extension
https://docs.google.com/document/d/1O6kxAQPLWhCRHkH-6zutcqEUOUWRS6NFM2CQAvi1VTg/edit#bookmark=id.h435tnh1jf9k

Issue 170: Incompatible SVC metadata (cont’d)

e Comparison with RTCEncodedVideoFrameMetadata:

dictionary RTCEncodedVideoFrameMetadata {

unsigned long long frameld;
sequence<unsigned long long> dependencies;
unsigned short width;
unsigned short height;
unsigned long spatiallndex;
unsigned long temporallndex;
unsigned long synchronizationSource;
octet payloadType;

sequence<unsigned long> contributingSources;

F

54


https://github.com/w3c/webrtc-encoded-transform/issues/170

Issue 170: Incompatible SVC metadata (cont’d)

Issues:
e Name differences
o temporallLayerId vs. temporalIndex
o spatiallLayerId vs. spatiallIndex
e Type mismatches:
o unsigned short frameNumber vs.unsigned long long frameld
o sequence <unsigned long> dependsOnIds vs. sequence <unsigned long long>
dependencies
e Missing information
o sequence <unsigned long> decodeTargets
m List of decode targets this frame participates in. Used to determine whether this frame
should be forwarded to a receiver based on what decode targets the receiver is
expecting.
o Map <unsigned long, unsigned long> chainlLinks
B Used to ensure we preserve decode order for the desired decode target. It is insufficient
to satisfy the dependencies for the current frame.
e Proposal: submit PR to harmonize SVC metadata between Encoded Transform and
WebCodecs

95


https://github.com/w3c/webrtc-encoded-transform/issues/170

Discussion (End Time: 09:45)

56



WebRTC-PC
Start Time: 09:45 AM
End Time: 10:00 AM

57



For Discussion Today

e |ssue 2795: Missing URL in RTClceCandidatelnit

e |ssue 2/80: duplicate rids in sRD underspecified

e PR 2801: Prune createAnswer()'s encodings and
[[SendEncodings]] in sLD(answer).

58


https://github.com/w3c/webrtc-pc/issues/2795
https://github.com/w3c/webrtc-pc/issues/2780
https://github.com/w3c/webrtc-pc/pull/2801/

Issue 2795: Missing URL in RTClceCandidatelnit

e Added url and relayProtocol to RTClceCandidate
o These are not possible to reconstruct and only available
for local candidates
o Not serialized by toJSON, not to be signaled
e 4.8.1:"...the remaining attributes are derived from parsing
the candidate”
o Not updated when adding the new properties
e Proposal:
o update description in 4.8.1
o Write more tests!

59


https://github.com/w3c/webrtc-pc/issues/2795
https://w3c.github.io/webrtc-pc/#methods-2

Issue 2780 / PR 2800: duplicate rids in sRD underspecified

Proposal: Remove duplicate rids in proposedSendEncodings:

encoding's rid matches that of another encoding in proposedSendEncodings,

I 2. For each encoding, encoding, in proposedSendEncodings in reverse order, if
remove encoding from proposedSendEncodings.

60


https://github.com/w3c/webrtc-pc/issues/2780
https://github.com/w3c/webrtc-pc/pull/2800
https://pr-preview.s3.amazonaws.com/jan-ivar/webrtc-pc/pull/2800.html#set-description

PR 2801: Prune createAnswer()'s encodings and
[[SendEncodings]] in sLD(answer).

A follow-up to #2758 whose intent was to defer pruning of [[SendEncodings]] to sLD(answer), but mistakenly relied on the spec's existing
pruning language which only applies to sRD(answer).

Add similar language to sLD(answer):

7. If description is of type "answer" or "pranswer", then run the following steps:

1. If transceiver. [ [Sender]].[[SendEncodings]] .length is greater than 1, then
run the following steps:

1. If description is missing all of the previously negotiated layers, then
remove all dictionaries in transceiver.[ [Sender]].[ [SendEncodings] ]
except the first one, and skip the next step.

2. If description is missing any of the previously negototiated layers, then
remove the dictionaries that correspond to the missing layers from
transceiver.[ [Sender]].[[SendEncodings]].

Next, we need to touch where this description comes from (next slide: createAnswer)

61


https://github.com/w3c/webrtc-pc/pull/2801/
https://github.com/w3c/webrtc-pc/pull/2758

PR 2801: Prune createAnswer()'s encodings and
[[SendEncodings]] in sLD(answer).

Fix final steps to create an answer to prune based on JSEP’s answer N [[Sender]].[[SendEncodings]], instead of parroting create offer:

2. If the length of the [ [SendEncodings]] slot of the RTCRtpSender is larger than 1, then for each
encoding given in [ [SendEncodings]] of the RTCRtpSender, add an a=rid send line to the
corresponding media section, and add an a=simulcast:send line giving the RIDs in the same
order as given in the encodings field. No RID restrictions are set.

2. If this is an answer to an offer to receive simulcast, then for each media section requesting to
receive simulcast, exclude from the media section in the answer any RID not found in the
corresponding transceiver's [ [Sender]].[[SendEncodings]]. If there are any identically named
RIDs in the a=simulcast attribute, remove all but the first one. No RID restrictions are set.

NOTE

When a setRemoteDescription(offer) establishes a transceiver's simulcast envelope, the
transceiver's [[Sender]].[[SendEncodings]] is updated in "have-remote-offer". However,
once a simulcast envelope has been established for the transceiver, subsequent pruning of the
transceiver's [[Sender]].[[SendEncodings]] happen when this answer is set with

setLocalDescription.

62


https://github.com/w3c/webrtc-pc/pull/2801/
https://pr-preview.s3.amazonaws.com/jan-ivar/webrtc-pc/pull/2801.html#dfn-final-steps-to-create-an-answer

Discussion (End Time: 09:50)

63



Thank you

Special thanks to:

WG Participants, Editors & Chairs

64



