Volume integrals in Content MathML

Assume that the mass of an object is given by the volume integral of its mass density.
In LaTeX:

$\int \rho({\bf r}) d^3{\bf r}$

The (unambiguous) interpretation of this is the integration of the density over all 3-space, regardless of the basis in which the vector, r, may later be expressed.

Can this be expressed in Content MathML compactly, without the assumption of a basis?

Certainly if I assume a basis, e.g., Cartesian coordinates, then I could express the integral as

<apply>
�� <int/> 
����� <bvar> <ci>x</ci> </bvar>
����� <lowlimit><minfinity/></lowlimit>
����� <uplimit><infinity/></uplimit>
�� <apply>
����� <int/>
�������� <bvar> <ci>y</ci> </bvar>
�������� <lowlimit><minfinity/></lowlimit>
�������� <uplimit><infinity/></uplimit>
����� <apply>
�������� <int/>
����������� <bvar> <ci>z</ci> </bvar>
����������� <lowlimit><minfinity/></lowlimit>
����������� <uplimit><infinity/></uplimit>
�������� <apply>
����������� <fn>&rho</fn>
����������� <vector> <ci>x</ci> <ci>y</ci> <ci>z</ci> </vector>
�������� </apply>
����� </apply>
�� </apply>
</apply>


Regards,
Joe C.


      

Received on Tuesday, 4 November 2008 02:20:23 UTC